首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4064篇
  免费   350篇
  国内免费   329篇
电工技术   90篇
综合类   168篇
化学工业   733篇
金属工艺   688篇
机械仪表   221篇
建筑科学   158篇
矿业工程   31篇
能源动力   166篇
轻工业   105篇
水利工程   47篇
石油天然气   39篇
武器工业   26篇
无线电   397篇
一般工业技术   1026篇
冶金工业   292篇
原子能技术   90篇
自动化技术   466篇
  2024年   16篇
  2023年   149篇
  2022年   166篇
  2021年   226篇
  2020年   160篇
  2019年   112篇
  2018年   135篇
  2017年   126篇
  2016年   126篇
  2015年   122篇
  2014年   189篇
  2013年   224篇
  2012年   224篇
  2011年   334篇
  2010年   201篇
  2009年   197篇
  2008年   202篇
  2007年   212篇
  2006年   198篇
  2005年   148篇
  2004年   155篇
  2003年   152篇
  2002年   128篇
  2001年   117篇
  2000年   99篇
  1999年   81篇
  1998年   91篇
  1997年   81篇
  1996年   42篇
  1995年   56篇
  1994年   34篇
  1993年   37篇
  1992年   38篇
  1991年   45篇
  1990年   59篇
  1989年   19篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1975年   3篇
  1964年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有4743条查询结果,搜索用时 187 毫秒
31.
《Ceramics International》2020,46(8):11846-11853
Cr2AlC and its composites containing α-Al2O3 (6.1 and 15.2 wt %) were prepared by hot pressing and their corrosion behaviors in air-saturated 3.5 wt % NaCl aqueous solution were investigated by electrochemical testing methods. It was revealed that the secondary phase of Al2O3 particles mainly distributed along grain boundaries of Cr2AlC matrix. The potentiodynamic polarization measurements showed that the corrosion current densities of these Cr2AlC composites were lower than that of the pure Cr2AlC. The Aluminum in Cr2AlC was prone to be attacked more easily. When immersed at open circuit potential (OCP), Al readily slipped out from Cr2AlC matrix into NaCl solution in the form of dissoluble species. But in the case of polarization, regardless of potentiostatic polarization or potentiodynamic polarization, more de-intercalated Al, reacted with the electrolyte to form corrosion products of Al2O3 and/or AlOOH and deposited on the sample surface. For Cr2AlC/α-Al2O3 composites, the presence of Al2O3 weakened the corrosion along grain boundaries by partly blocking the permeation of electrolyte and inhibiting the anodic dissolution process.  相似文献   
32.
Recently, research in copper based quaternary chalcogenide materials has focused on the study of thermoelectric properties due to the complexity in the crystal structure. In the present work, stoichiometric quaternary chalcogenide compounds Cu2+xCd1−xGeSe4 (x = 0, 0.025, 0.05, 0.075, 0.1, 0.125) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I-42m of the main phase, whereas the samples with x = 0 and x = 0.025 revealed the presence of an orthorhombic phase in addition to the main phase as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 300 K–723 K. The electrical conductivity of all the samples increased with increasing Cu content due to the enhancement of the hole concentration caused by the substitution of Cd (divalent) by Cu (monovalent). The positive Seebeck coefficient of all the samples in the entire temperature ranges indicates that holes are the majority carriers. The Seebeck coefficient of all the samples decreased with increasing Cu content and showed a reverse trend to the electrical conductivity. The total thermal conductivity of all the samples decreased with increasing temperature which was dominated by the lattice contribution. The maximum figure of merit ZT = 0.42 at 723 K was obtained for the compound Cu2.1Cd0.9GeSe4.  相似文献   
33.
Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique.  相似文献   
34.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   
35.
This article describes a novel approach for deciding optimal horizontal extent of soil domain to be used for finite element based numerical dynamic soil structure interaction (SSI) studies. SSI model for a 12 storied building frame, supported on pile foundation-soil system, is developed in the finite element based software framework, OpenSEES. Three different structure-foundation configurations are analyzed under different ground motion characteristics. Lateral extent of soil domain, along with the soil properties, were varied exhaustively for a particular structural configuration. Based on the reduction in the variation of acceleration response at different locations in the SSI system (quantified by normalized root mean square error, NRMSE), the optimum lateral extent of the soil domain is prescribed for various structural widths, soil types and peak ground acceleration levels of ground motion. Compared to the past studies, error estimation analysis shows that the relationships prescribed in the present study are credible and more inclusive of the various factors that influence SSI. These relationships can be readily applied for deciding upon the lateral extent of the soil domain for conducting precise SSI analysis with reduced computational time.  相似文献   
36.
Uranium dioxide ceramics are widely used as nuclear fuels. Thus, it is important to understand the role of the grain boundaries (GBs) which decisively govern the properties of these polycrystalline materials and subsequently determine their performances. Here, we report a coupled numerical - experimental approach enabling to assess GB energies. Firstly, GB formation energies (γgb) were computed for 34 symmetric tilt GBs in UO2 with molecular dynamics simulations at 1700 K. The surface energies (γS) relative to the respective planes of these GBs were calculated as well. The Herring relation was then used to assess the dihedral angles Ψ of the corresponding GB grooves. Secondly, a UO2 ceramic sample was annealed at 1673 K to obtain GB grooves. The CSL GBs of interest were identified by EBSD and their Ψ angles determined by AFM. Computed and measured Ψ values were found to be very close.  相似文献   
37.
In this paper, polycrystalline Co2TiO4 ceramics have been synthesized using a sol-gel process followed by annealing at different temperatures. The lattice size and the average grain size of the samples increases with rise in annealing temperature. The temperature-dependent inverse paramagnetic susceptibilities recorded under zero-field-cooling condition have been fitted according to the Néel's expression for ferrimagnets. Subsequently, the molecular field constants and the corresponding exchange constants have been calculated. The fitting result shows that the magnetic interaction in the system becomes weaker as the annealing temperature rises. In addition, negative magnetization is observed during field-cooling process. The higher annealing temperature is beneficial to the growth of tetrahedral sublattice, leading to a decrease on compensation temperature. Furthermore, magnetization hysteresis loops for all the samples demonstrate the crucial role of grain size on the magnetic properties.  相似文献   
38.
Complex products such as satellites, missiles, and aircraft typically have demanding requirements for dynamic data management and process traceability. The assembly process for these complex products involves high complexity, strong dynamics, many uncertainties, and frequent rework and repair, especially in the model development stage. Achieving assembly data management and process traceability for complex products has always been a challenge. A recently proposed solution involves one-to-one mapping of the corresponding physical entity, also known as the digital twin method. This paper proposes a digital twin-based assembly data management and process traceability approach for complex products. First, the dynamic evolutionary process of complex product assembly data was analyzed from three dimensions: granularity, period and version. Then, a framework of digital twin-based assembly data management and process traceability for complex products was constructed. Some core techniques are: 1) workflow-based product assembly data organization and version management; 2) synchronous modeling of the product assembly process based on digital twin; and 3) hierarchical management and traceability of product assembly data based on digital twin. On this basis, an algorithm flowchart for generating a product assembly data package was created, which includes product assembly data management, assembly process traceability, and generation of a product assembly data package. Furthermore, the Digital Twin-based Assembly Process Management and Control System (DT-APMCS) was designed to verify the efficiency of the proposed approach. Some aerospace-related assembly enterprises are currently using DT-APMCS and achieving satisfactory results. Finally, a summary of our work is given, and the future research work is also discussed.  相似文献   
39.
With the development of intelligent manufacturing (IM), the Digital twin (DT) has become an important means to the evolution mechanism of the process. Many researchers pay attention on the realization of DT in different industries. Based on the DT and Digital Twin Shop Floor (DTS) model, a novel, high throughput metrology method is proposed in the process quality monitoring and control of the Series Solar Cell Production Line (SSCPL) for detailed performance analysis. The variance of individual loss parameters and their impact on quality performance are quantified and mapped into the virtual space. The nature of their distributions and correlations provide great insights about quality loss mechanisms in process monitoring, helping to prioritize efforts for optimizing the control of the SSCPL in the physical space. Additionally, the parameters can be tied back to the physical space, allowing the data to be used directly for the control in the manufacturing. The data-loop of “Autonomous perception of process parameters - Dynamic behaver mapping - Online monitoring - Online data analysis - Parameters configuration & control” can be obtained in the model. This paper provides an application paradigm for DT and IM.  相似文献   
40.
Passivation of organometal halide perovskites with polar molecules has been recently demonstrated to improve the photovoltaic device efficiency and stability. However, the mechanism is still elusive. Here, it is found that both polymers with large and small dipole moment of 3.7 D and 0.6 D have negligible defect passivation effect on the MAPbI3 perovskite films as evidenced by photothermal deflection spectroscopy. The photovoltaic devices with and without the polymer additives also have comparable power conversion efficiencies around 19%. However, devices with the additives have noticeable improvement in stability under continuous light irradiation. It is found that although the initial mobile ion concentrations are comparable in both devices with and without the additives, the additives can strongly suppress the ion migration during the device operation. This contributes to the significantly enhanced electrical-field stress tolerance of the perovskite solar cells (PVSCs). The PVSCs with polymer additives can operate up to −2 V reverse voltage bias which is much larger than the breakdown voltage of −0.5 V that has been commonly observed. This study provides insight into the role of additives in perovskites and the corresponding device degradation mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号